Rubriflorin A and B, Two Novel Partially Saturated Dibenzocyclooctene Lignans from Schisandra rubriflora

by Liang Li*, Hai-Ying Ren, Xiao-Dong Yang, Jing-Feng Zhao, Gan-Peng Li, and Hong-Bin Zhang

School of Pharmacy, Center for Advanced Studies of Medicinal and Organic Chemistry, Yunnan University, Kunming 650091, Yunnan, P.R. China

(tel.: +86-871-5033644; fax: +86-871-5035538; e-mail: liliang5758@hotmail.com)

From the stems of *Schisandra rubriflora*, two novel partially saturated dibenzocyclooctene lignans, named rubriflorin A (1) and B (6), as well as the seven known partially saturated dibenzocyclooctene lignans kadsumarin A (2), kadsurin (3), heteroclitin B (4), heteroclitin C (5), heteroclitin D (7), interiorin (8), and interiorin B (9) were isolated. The structures of the new compounds 1 and 6 were established on the basis of spectral analysis as (5*R*,6*S*,7*R*,8*R*,13a*S*)-8-(acetyloxy)-5,6,7,8-tetrahydro-1,2,3,13-tetramethoxy-6,7-dimethylbenz([3,4]cycloocta[1,2-f][1,3]benzodioxol-5-yl (2*Z*)-2-methylbut-2-enoate and (6*R*,7*R*,12a*S*)-7,8-dihydro-12-hydroxy-1,2,3,10,11-pentamethoxy-6,7-dimethyl-6*H*-dibenzo[*a*,*c*]cycloocten-5-one, respectively.

Introduction. – The genus *Schisandra* (Schisandraceae) is represented in China with 19 species, mostly growing in the southwestern part of the country on mountains 1500 m above sea level or higher [1]. *Schisandra rubriflora* R HED. et WILS has long been used as a tonic in Chinese folk medicine. It has been shown to be effective in reducing the level of GPT (glutamic-pyruvic transaminase) [2][3]. Previous investigations revealed the presence of lignans in the seeds of the plant [4]. As part of our studies of medicinal plants of the Schisandraceae family, we studied the lignans of the stem of *S. rubriflora*; two new partially saturated dibenzocyclooctene lignans, named rubriflorin A (1) and B (6), as well as seven known partially saturated dibenzocyclooctene lignans, were isolated. The known compounds were identified as kadsumarin A (2) [5], kadsurin (3) [6], heteroclitin B (4), heteroclitin C (5) [7], heteroclitin D (7) [7], interiorin (8) [8], and interiorin B (9) [9] (*Fig. 1*). Here we report the isolation and structure elucidation of 1 and 6.

Results and Discussion. – Rubriflorin A (1) was isolated as optically active colorless needles. Its molecular formula was determined as $C_{30}H_{36}O_{10}$ by HR-EI-MS (m/z 556.2269 (M^+)). The IR spectrum showed characteristic absorptions for an α , β -unsaturated ester (1708 and 1648 cm⁻¹) and an aromatic ring (1599 and 1504 cm⁻¹). The UV absorptions at 218 (4.60), 253 (4.15), and 284 nm (3.78) suggested the presence of a biphenyl chromophore in which rotation of the phenyl ring is restricted by the condensed acyclic ring [10]. The CD curves of 1 showed a negative *Cotton* effect around 255 nm indicating an (S)-biphenyl configuration ((P) helicity) [10]. Based on further spectral data (1 H- and 13 C-NMR ($Table\ I$), 1 H, 1 H-COSY, HMQC, HMBC, NOESY, and MS) ($Fig.\ 2$), the structure of compound 1 was elucidated as

Fig. 1. Structures of compounds 1-8

(5R,6S,7R,8R,13aS)-8-(acetyloxy)-5,6,7,8-tetrahydro-1,2,3,13-tetramethoxy-6,7-dimethyl-benzo[3,4]cycloocta[1,2-f)[1,3]benzodioxol-5-yl (2Z)-2-methylbut-2-enoate.

The $^1\text{H-NMR}$ spectrum of **1** showed signals due to two benzylic aromatic protons (δ 6.71 and 6.44 (each s)), an OCH₂O moiety (δ 5.96 and 5.95 (each d, J = 1.2 Hz), two CH-O moieties (δ 5.83 and 5.73 (each d, J = 7.1, 2.9 Hz)) and four MeO groups (δ 3.90, 3.88, 3.85, and 3.82 (each s)). The $^{13}\text{C-NMR}$ spectrum clearly indicated the presence of twelve C-atoms (C1 to C5, C(16) and C(10) to C(15), revealing a biphenyl moiety 1). A butane-1,4-diyl moiety was predicted due to the prominent cross-peaks of H-C(δ) (δ 5.83 (d, J = 7.1 Hz)), H-C(7) (δ 2.21 (m)), H-C(8) (δ 2.12 (m)) and H-C(9) (δ 5.73 (d, J = 2.9 Hz)) in the ^1H , H COSY plot. Moreover, the HMBC correlations (Fig. 2) H-C(δ) (δ (C) 15.83)/C(4) (δ (C) 110.0) and C(16) (δ (C) 123.6) and H-C(9) (δ (H) 5.73)/C(11) (δ (C) 102.7) and C(15) (δ (C) 121.6) implied that **1** has a substituted butane-1,4-diyl part

¹⁾ Arbitrary numbering; for systematic names, see Exper. Part.

	$\delta(H)$	δ(C)		δ(H)	δ(C)
C(1)		152.0	C(16)		123.6
C(2)		141.7	Me(17)	0.94 (d, J = 6.9 Hz)	16.0
C(3)		152.2	Me(18)	1.03 (d, J = 6.9 Hz)	20.3
H-C(4)	6.71(s)	111.0	$CH_2(19)$	5.96, 5.95 (d, J = 1.2 Hz)	101.4
C(5)		131.7	MeO-C(1)	3.57(s)	61.0
H-C(6)	5.83 (d, J = 7.1 Hz)	81.1	MeO-C(2)	3.88(s)	60.6
H-C(7)	2.21(m)	39.1	MeO-C(3)	3.90(s)	56.4
H-C(8)	2.12(m)	39.1	MeO-C(14)	3.77(s)	60.0
H-C(9)	5.73 (d, J = 2.9 Hz)	81.1	C(1')		167.1
C(10)		133.5	C(2')		128.2
H-C(11)	6.44(s)	102.7	H-C(3')	5.96 (m)	138.8
C(12)		149.0	Me(4')	1.50 (dq, J = 1.5, 7.2 Hz)	16.0
C(13)		136.4	Me(5')	1.86 (dq, J = 1.5, 2.9 Hz)	20.3
C(14)		142.2	MeCOO-C(9)		170.4
C(15)		121.6	MeCOO-C(9)	1.59 (s)	21.0

Table 1. ${}^{1}H$ -(500 MHz) and ${}^{13}C$ -NMR (125 MHz) Data of Rubriflorin A (1) in CDCl₃. δ in ppm. Arbitrary numbering¹).

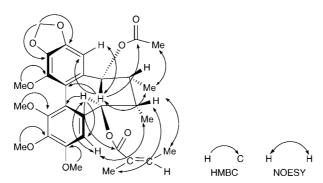


Fig. 2. Key correlations in the HMBC and NOESY experiments of rubriflorin A (1)

(C(6)-C(7)-C(8)-C(9)) at C(5) and C(10), and two substituted aromatic moieties linked between C(15) and C(16). From the above evidence, the skeleton of **1** was deduced to be a substituted hexahydrodibenzocyclooctene lignan similar to those isolated previously from Schisandraceae plants [11][12].

The substituents appearing in the ^1H - and ^{13}C -NMR spectra of $\mathbf{1}$ were assigned as MeO–C(1), MeO–C(2), MeO–C(3), MeO–C(14), OCH₂(19)O, MeCl–(17), and Me–Cl(18), based on the HMQC and HMBC spectra. An angeloyl (=(2*Z*)-2-methylbut-2-enoyl) group (H–C(3'), Me(4'), Me(5'), C(1') to C(5')) and an acetic acid ester (MeCOO) were also present (see NMR data in *Table 1*). Besides the molecular ion at m/z 556, the EI-MS of $\mathbf{1}$ showed two characteristic peaks at m/z 457 ([M – $C_5H_7O_2$]+) and 497 ([M – AcO]+) confirming the presence of an angeloyloxy and an acetyloxy group. The HMBC correlations (see *Fig. 2*) H–C(6) (δ (H) 5.83)/C(1') (δ (C) 167.1) and H–C(9) (δ (H) 5.73)/MeCOO (δ (C) 170.4) suggested that the angeloyloxy group is attached at C(6) and the acetyloxyl group at C(9). In addition, the J(H $_\beta$ –C(8), H $_\beta$ –C(9)) value of 2.9 Hz and the NOEs (*Fig. 2*) between H–C(4)/Me(17), H–C(4)/H $_a$ –(6), H–C(9)/H–C(11) and H–C(9)/Me(18) indicate a twist-boat-chair conformation of the cyclooctadiene moiety [11].

Rubriflorin B (6) was isolated as yellowish powder. Its molecular formula was determined as $C_{23}H_{28}O_7$ by HR-EI-MS (m/z 416.4736 (M^+)). The IR spectrum contained characteristic absorptions for an OH group (3384 cm⁻¹, (br.)), a carbonyl

group (1662 cm⁻¹), and an aromatic ring (1586 and 1507 cm⁻¹). The UV spectrum showed λ_{max} at 222 (4.80), 254 (4.25), and 285 nm (3.98), characteristic of a biphenyl chromophore. The CD curves of **6** also showed a negative *Cotton* effect around 253 nm indicating an (*S*)-biphenyl configuration [10]. Based on further spectral data (1 H- and 13 C-NMR (*Table 2*), 1 H, 1 H-COSY, HMQC, and HMBC), the structure of compound **6** was elucidated as (6 R,7R,12aS)-7,8-dihydro-12-hydroxy-1,2,3,10,11-pentamethoxy-6,7-dimethyl-6*H*-dibenzo[6 R, 6 Cycloocten-5-one.

Table 2. ${}^{1}H$ -(500 MHz) and ${}^{13}C$ -NMR (125 MHz) Data of Rubriflorin B (2) in CDCl₃. δ in ppm. Arbitrary numbering¹).

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
C(1)		152.5	C(12)		134.3
C(2)		133.9	C(13)		151.5
C(3)		152.3	C(14)		146.1
H-C(4)	6.38 (s)	102.8	C(15)		124.1
C(5)	. ,	147.4	C(16)		115.8
$CH_2(6)$	2.64 (dd, J = 12.9, 6.6 Hz),	40.2	Me(17)	0.83 (d, J = 6.9 Hz)	15.4
	2.22 (dd, J = 12.3, 12.6 Hz)		Me(18)	1.01 $(d, J = 6.6 \text{ Hz})$	15.3
H-C(7)	1.82 (m)	41.4	MeO-C(2)	3.95(s)	60.9
H-C(8)	2.69 (qd, J = 6.6, 3.8 Hz)	44.6	MeO-C(3)	3.93 (s)	55.9
C(9)		200.9	MeO-C(12)	3.92 (s)	55.8
C(10)		135.9	MeO-C(13)	3.56(s)	61.2
H-C(11)	7.63(s)	108.1	MeO-C(14)	3.94 (s)	60.8

The ^1H -NMR spectrum of **6** showed signals due to two aromatic protons (δ 7.63, 6.38 (2s), an OH proton (δ 5.90, 5.95 (2s), and five MeO groups (δ 3.95, 3.94, 3.93, 3.92, 3.56 (each s). The ^{13}C -NMR spectrum clearly indicated the presence of twelve C-atoms (C(1) to C(5), C(16) and C(10) to C(15), revealing a biphenyl moiety. A propane-1,3-diyl moiety was predicted due to the prominent cross-peaks of CH₂(6) (δ 2.64 (dd, J = 12.9, 6.6 Hz) and 2.22 (dd, J = 12.3, 12.6 Hz)), H – C(7) (δ 1.82 (m)), and H – C(8) (δ 2.69 (qd, J = 6.6, 3.8 Hz)) in the ^1H , H COSY plot. Moreover, the obvious HMBC correlations CH₂(6) (δ (H) 2.64, 2.22)/C(4) (δ (C) 102.8), C(10) (δ (C) 108.1) and C(16) δ (C) 115.8)/H – C(8) (δ (H) 2.69 and H – C(7) (δ (H) 1.82)/C(9) (δ (C) 200.9), and H – C(11) (δ (H) 7.63)/C(9) (δ (C) 200.9) implied that **6** possesses a substituted butane-1,4-diyl moiety (C(6) – C(7) – C(8) – C(9)) at C(5) and C(10), and two substituted aromatic moieties connected at C(15) and C(16) linkage. From the above evidence, the skeleton of **6** was also deduced to be a substituted partially saturated dibenzocyclooctene lignan. The substituents were assigned as MeO – C(2), MeO – C(3), MeO – C(12), MeO – C(13), MeO – C(14), Me(17), and Me(18) based on the ^1H , H COSY, HMQC, and HMBC spectra.

This work was supported by the Academic and Technical Youth Leader Foundation of Yunnan Province, which is gratefully acknowledged.

Experimental Part

General. Melting points (uncorrected): XT-4 melting-point apparatus. $[a]_D$ Values: Jasco 20C digital polarimeter. CD Curves: Jasco J500A dichrograph; ($\Delta \varepsilon$) in nm. UV Spectra: UV-210A spectrometer; λ_{\max} (log ε) in nm. IR Spectra: Bio-Rad FTS-135 spectrometer; in cm $^{-1}$. 1D- and 2D-NMR Spectra: Bruker Avance DRX-500 instrument; SiMe $_4$ as internal reference, δ in ppm, J in Hz. EI-MS: VG Auto-Spec-3000 mass spectrometer; in m/z (rel.%).

Plant Material. The stems of *S. rubriflora* RHED. et WILS were collected in Linchang Country, Yunnan Province, P.R. China, in April 2001. The plant was identified by Prof. *Zhi-hao Hu*, Department of Biology, School of Life Science, Yunnan University. A voucher specimen (No. 01-003) was deposited in the Department of Phytochemistry, School of Pharmacy, Yunnan University, Yunnan, P.R. China.

Extraction and Isolation. The stem of Schisandra rubriflora (6.0 kg) was air-dried, ground, and extracted (3×) with 95% EtOH at r.t. The EtOH extract was evaporated to yield a residue, which was suspended in H_2O and then partitioned with CHCl₃, AcOEt, and BuOH, successively. The AcOEt extract (60 g) was subjected to column chromatography (CC; silica gel, petroleum ether/Me₂CO 60:1 \rightarrow to 0:1): Fractions (1–8). Fr. 2 was further purified by CC (silica gel, petroleum ether/Et₂O 20:1 \rightarrow 1:1) as eluent and finally by reversed-phase CC (C_{18} silica gel, MeOH/ H_2O 8:2 \rightarrow 1:1): **1** (56 mg), **8** (210 mg), and **9** (65 mg). Fr. 3 was purified by CC silica gel, cyclohexane/PrOH 40:1 \rightarrow 1:1); further reversed-phase CC (C_{18} silica gel) MeOH/ H_2O 8:2 \rightarrow 2:8) gave **4** (60 mg), **5** (85 mg), **6** (25 mg) and **7** (110 mg). Fr. 5 was subjected to CC (silica gel, petroleum ether/AcOEt (10:1 \rightarrow 0:1): **2** (1.045 g) and **3** (875 mg).

 $Rubriflorin\ A\ (=(5\text{R},6\text{S},7\text{R},8\text{R},13\text{aS})-8-(Acetyloxy)-5,6,7,8-tetrahydro-1,2,3,13-tetramethoxy-6,7-dimethyl-benzo[3,4]cycloocta[1,2-f][1,3]benzodioxol-5-yl\ (2Z)-2-Methylbut-2-eonate;\ 1): Colorless needles (CHCl_3). M.p. 176 – 178°. [a]_{b}^{6}=+62.99\ (c=0.254,\text{CHCl}_3). CD\ (MeOH,\ c=0.0005\ g/ml): 255\ (-45\,000),\ 300\ (-3000). UV\ (CHCl_3): 218\ (4.60),\ 253\ (4.15),\ 284\ (3.78). IR\ (KBr): 3436,\ 1708,\ 1648,\ 1599,\ 1504,\ 1477,\ 974,\ 768.\ ^{1}\text{H-}\ and\ ^{13}\text{C-NMR}:\ Table\ 1.\ EI-MS: 556(100),\ 497(22),\ 457(39),\ 397(10),\ 357(28),\ 329(6),\ 159(4),\ 97(4),\ 83(72).\ HR-EI-MS: 556.2269\ (C_{30}\text{H}_{3o}\text{O}_{1o}^+,\ M^+;\ calc.\ 556.2308).$

 $Rubriflorin \ B \ (= (6\text{R},7\text{R},12a\text{S})\text{-}7,8\text{-}dihydro\text{-}12\text{-}hydroxy\text{-}1,2,3,10,11\text{-}pentamethoxy\text{-}6,7\text{-}dimethyl\text{-}6\text{H}\text{-}dibenzo[a,c]\ cycloocten\text{-}5\text{-}one; \textbf{6}): Yellowish\ powder\ (CHCl_3).\ M.p.\ 175\text{-}176^\circ.\ [a]_{19}^{19} = -32.68\ (c=0.153,\text{CHCl}_3).\ CD\ (MeOH,\ c=0.0005\ g/ml):\ 253\ (-23400),\ 298\ (-2000).\ UV\ (CHCl_3):\ 222\ (4.80),\ 254\ (4.25),\ 285\ (3.98).\ IR\ (KBr):\ 3384,\ 3162,\ 297,\ 1662,\ 1586,\ 1507,\ 1488,\ 993,\ 823.\ ^{1}\text{H-}\ and ^{13}\text{C-NMR}:\ Table\ 2.\ EI-MS:\ 416(100),\ 401(8),\ 385(9),\ 360(12),\ 344(14),\ 312(10),\ 284(12),\ 257(4),\ 249(5),\ 164(11),\ 157(10),\ 115(5),\ 83(6).\ HR-EI-MS:\ 416.4736\ (C_{30}H_{36}O_{10}^+,\ M^+;\ calc.\ 416.4704).$

REFERENCES

- Institute of Kunming Botany, Chinese Academy of Sciences, Flora Yunnanica, Science Press, Beijing, 2000, Vol. 11, p. 20.
- [2] Y. Y. Chen, H. J. Wang, Acta Pharm. Sin. 1982, 17, 312.
- [3] L. Li, G. T. Liu, Acta Pharmacologica Sin. 1998, 33, 81.
- [4] H. J. Wang, Y. Y. Chen, Acta Pharm. Sin. 1985, 20, 832.
- [5] Y. H. Kuo, S. Y. Li, M. D. Wu, R. L. Huang, L. Y. Kuo, C. F. Chen, Chem. Pharm. Bull. 1999, 47, 1047.
- [6] Y. P. Chen, R. Liu, H. Y. Hsu, S. Yamamura, Tetrahedron Lett. 1973, 43, 4257.
- [7] D. F. Chen, G. J. Xu, X. W. Yang, M. Hattori, Y. Tezuka, T. Kikuchi, T. Namaba, *Phytochemistry* **1992**, *31*, 629.
- [8] S. D. Luo, Z. H. Din, R. Mayer, G. Rucker, G. Will, A. Kirfel, R. Langen, Planta Med. 1988, 54, 440.
- [9] Z. H. Din, S. D. Luo, Acta Chim. Sin. 1990, 48, 1075.
- [10] D. C. Ayres, J. D. Loike, in 'Lignans, Chemical, Biological and Clinical Properties', Cambridge University Press, Cambridge, 1990, p. 170, 257.
- [11] Y. G. Chen, P. Wang, Z. W. Lin, H. D. Sun, G. W. Qin, Y. Y. Xie, *Phytochemistry* 1998, 48, 1059.
- [12] X. W. Yang, H. Miyashiro, M. Hattori, T. Namba, Y. Tezuka, T. Kikuchi, D. F. Chen, G. J. Xu, T. Hori, M. Extine, H. Mizuno, Chem. Pharm. Bull. 1992, 40, 1510.

Received August 13, 2004